66 research outputs found

    Phonon density of states and compression behavior in iron sulfide under pressure

    Get PDF
    We report the partial phonon densities of states (DOS) of iron sulfide, a possible component of the rocky planet's core, measured by the Fe-57 nuclear resonant inelastic x-ray scattering and calculate the total phonon DOS under pressure. From the phonon DOS, we drive thermodynamic parameters. A comparison of the observed and estimated compressibilities makes it clear that there is a large pure electronic contribution in the observed compressibility in the metallic state. Our results present the observation of thermodynamic parameters of iron sulfide with the low-spin state of an Fe2+ ion at the high density, which is similar to the condition of the Martian core

    Iron force constants of bridgmanite at high pressure: Implications for iron isotope fractionation in the deep mantle

    Get PDF
    The isotopic compositions of iron in major mantle minerals may record chemical exchange between deep-Earth reservoirs as a result of early differentiation and ongoing plate tectonics processes. Bridgmanite (Bdg), the most abundant mineral in the Earth’s lower mantle, can incorporate not only Al but also Fe with different oxidation states and spin states, which in turn can influence the distribution of Fe isotopes between Bdg and ferropericlase (Fp) and between the lower mantle and the core. In this study, we combined first-principles calculations with high-pressure nuclear resonant inelastic X-ray scattering measurements to evaluate the effects of Fe site occupancy, valence, and spin states at lower-mantle conditions on the reduced Fe partition function ratio (β-factor) of Bdg. Our results show that the spin transition of octahedral-site (B-site) Fe3+ in Bdg under mid-lower-mantle conditions generates a +0.09‰ increase in its β-factor, which is the most significant effect compared to Fe site occupancy and valence. Fe2+-bearing Bdg varieties have smaller β-factors relative to Fe3+-bearing varieties, especially those containing B-site Fe3+. Our models suggest that Fe isotopic fractionation between Bdg and Fp is only significant in the lowermost mantle due to the occurrence of low-spin Fe2+ in Fp. Assuming early segregation of an iron core from a deep magma ocean, we find that neither core formation nor magma ocean crystallization would have resulted in resolvable Fe isotope fractionation. In contrast, Fe isotopic fractionation between low-spin Fe3+-bearing Bdg/Fe2+-bearing Fp and metallic iron at the core-mantle boundary may have enriched the lowermost mantle in heavy Fe isotopes by up to +0.20‰

    Economic Impact of Dengue Illness and the Cost-Effectiveness of Future Vaccination Programs in Singapore

    Get PDF
    Dengue illness is a tropical disease transmitted by mosquitoes that threatens more than one third of the worldwide population. Dengue has important economic consequences because of the burden to hospitals, work absenteeism and risk of death of symptomatic cases. Governments attempt to reduce the disease burden using costly mosquito control strategies such as habitat reduction and spraying insecticide. Despite such efforts, the number of cases remains high. Dengue vaccines are expected to be available in the near future and there is an urgent need to evaluate their cost-effectiveness, i.e. whether their cost will be justified by the reduction in disease burden they bring. For such an evaluation, we estimated the economic impacts of dengue in Singapore and the expected vaccine costs for different prices. In this way we estimated price thresholds for which vaccination is not cost-effective. This research provides useful estimates that will contribute to informed decisions regarding the adoption of dengue vaccination programs

    Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis

    Get PDF
    Background The infection-fatality ratio (IFR) is a metric that quantifies the likelihood of an individual dying once infected with a pathogen. Understanding the determinants of IFR variation for COVID-19, the disease caused by the SARS-CoV-2 virus, has direct implications for mitigation efforts with respect to clinical practice, non-pharmaceutical interventions, and the prioritisation of risk groups for targeted vaccine delivery. The IFR is also a crucial parameter in COVID-19 dynamic transmission models, providing a way to convert a population's mortality rate into an estimate of infections.Methods We estimated age-specific and all-age IFR by matching seroprevalence surveys to total COVID-19 mortality rates in a population. The term total COVID-19 mortality refers to an estimate of the total number of deaths directly attributable to COVID-19. After applying exclusion criteria to 5131 seroprevalence surveys, the IFR analyses were informed by 2073 all-age surveys and 718 age-specific surveys (3012 age-specific observations). When seroprevalence was reported by age group, we split total COVID-19 mortality into corresponding age groups using a Bayesian hierarchical model to characterise the non-linear age pattern of reported deaths for a given location. To remove the impact of vaccines on the estimated IFR age pattern, we excluded age-specific observations of seroprevalence and deaths that occurred after vaccines were introduced in a location. We estimated age-specific IFR with a non-linear meta-regression and used the resulting age pattern to standardise all-age IFR observations to the global age distribution. All IFR observations were adjusted for baseline and waning antibody-test sensitivity. We then modelled age-standardised IFR as a function of time, geography, and an ensemble of 100 of the top-performing covariate sets. The covariates included seven clinical predictors (eg, age-standardised obesity prevalence) and two measures of health system performance. Final estimates for 190 countries and territories, as well as subnational locations in 11 countries and territories, were obtained by predicting age-standardised IFR conditional on covariates and reversing the age standardisation.Findings We report IFR estimates for April 15, 2020, to January 1, 2021, the period before the introduction of vaccines and widespread evolution of variants. We found substantial heterogeneity in the IFR by age, location, and time. Age-specific IFR estimates form a J shape, with the lowest IFR occurring at age 7 years (0-0023%, 95% uncertainty interval [UI] 0-0015-0-0039) and increasing exponentially through ages 30 years (0-0573%, 0-0418-0-0870), 60 years (1-0035%, 0-7002-1-5727), and 90 years (20-3292%, 14-6888-28-9754). The countries with the highest IFR on July 15, 2020, were Portugal (2-085%, 0-946-4-395), Monaco (1-778%, 1-265-2-915), Japan (1-750%, 1-302-2-690), Spain (1-710%, 0-991-2-718), and Greece (1-637%, 1-155-2-678). All-age IFR varied by a factor of more than 30 among 190 countries and territories.After age standardisation, the countries with the highest IFR on July 15, 2020, were Peru (0-911%, 0-636-1-538), Portugal (0-850%, 0-386-1-793), Oman (0-762%, 0-381-1-399), Spain (0-751%, 0-435-1-193), and Mexico (0-717%, 0-426-1-404). Subnational locations with high IFRs also included hotspots in the UK and southern and eastern states of the USA. Sub-Saharan African countries and Asian countries generally had the lowest all-age and age-standardised IFRs. Population age structure accounted for 74% of logit-scale variation in IFRs estimated for 39 in-sample countries on July 15, 2020. A post-hoc analysis showed that high rates of transmission in the care home population might account for higher IFRs in some locations. Among all countries and territories, we found that the median IFR decreased from 0-466% (interquartile range 0-223-0-840) to 0-314% (0-143-0-551) between April 15, 2020, and Jan 1, 2021.Interpretation Estimating the IFR for global populations helps to identify relative vulnerabilities to COVID-19. Information about how IFR varies by age, time, and location informs clinical practice and non-pharmaceutical interventions like physical distancing measures, and underpins vaccine risk stratification. IFR and mortality risk form a J shape with respect to age, which previous research, such as that by Glynn and Moss in 2020, has identified to be a common pattern among infectious diseases. Understanding the experience of a population with COVID-19 mortality requires consideration for local factors; IFRs varied by a factor of more than 30 among 190 countries and territories in this analysis. In particular, the presence of elevated age-standardised IFRs in countries with well resourced health-care systems indicates that factors beyond health-care capacity are important. Potential extenuating circumstances include outbreaks among care home residents, variable burdens of severe cases, and the population prevalence of comorbid conditions that increase the severity of COVID-19 disease. During the pre-vaccine period, the estimated 33% decrease in median IFR over 8 months suggests that treatment for COVID-19 has improved over time. Estimating IFR for the pre-vaccine era provides an important baseline for describing the progression of COVID-19 mortality patterns.Funding Bill & Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom Copyright (c) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    Diversity of sandflies (Psychodidae: Phlebotominae) captured in sandstone caves from central amazonia, Brazil

    Get PDF
    In the present paper we describe the diversity of phlebotomine sandflies collected in three sandstone caves in the municipality of Presidente Figueiredo, state of Amazonas, Brazil. The phlebotomines were captured during 2006 with CDC light traps. Guano samples from inside the Gruta Refúgio do Maruaga were collected to investigate the presence of immature specimens. A total of 2,160 adult phlebotomines representing 15 species were captured. Pintomyia pacae was the dominant species in Gruta dos Animais (1,723 specimens) and Gruta dos Lages (50 specimens) and Deanemyia maruaga new comb (280 specimens) was the dominant species in Gruta Refúgio do Maruaga. A total of 18 guano samples were collected and seven of these samples included immature specimens. A total of 507 immature specimens were captured; 495 of these specimens were larvae and 12 were pupae. The presence of paca (Agouti paca) footprints near Gruta dos Animais and Gruta dos Lages suggests the association of Pi. pacae with this rodent. This finding may explain the abundance of Pi. pacae in these locations, while the species is relatively rare in the forest. Deanemyia maruaga is a cave species that uses guano to breed during its immature stages. Adult specimens of this species are apparently parthenogenetic and autogenous and represent the second record of parthenogenesis for the subfamily Phlebotominae

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe
    corecore